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Abstract 

One disadvantage of vector autoregressive (VAR) models is that they require time series to have equal lengths in 

the estimation process. This requirement induces a loss of potentially valuable information coming from time 

series that are longer than others. The issue is particularly evident in macroeconometric setups whenever 

variables have different starting points due to reasons grounded in various data recording and/or collection 

particularities. In many developing and emerging economies - especially those that were transitioned to market 

economies in the late 20th century - initial statistical observations on macro variables suffer from uneven 

availability and/or reliability. In this paper, we offer a remedy through a Bayesian approach: information in 

longer time series is aggregated into a prior which is then used in the estimation of parameters for the VAR 

process of clipped and equally-sized time series. Relative model performance is assessed by forecasting ability of 

resulting models gauged by mean absolute scaled errors (MASE). For illustration purposes, we employ time 

series from the Georgian economy and find that resulting (Bayesian) VAR models on average perform 7% better 

than standard alternatives with the same set of variables.  
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I. INTRODUCTION 

Most econometric textbooks and guides discuss time-series estimation procedures for balanced datasets 

ignoring an issue of missing data (Baltagi 2006). Although particular workarounds have been offered in the 

literature, discussion on potential problems incomplete data may cause in the estimation of vector autoregressive 

(VAR) models is limited. Ordinary Least Squares (OLS) techniques for VAR models, by design, require a 

balanced set of data for coefficient estimators, which means that the procedure is implemented in software 

packages in such a way that lengths of time series are mechanically clipped down to the shortest one. This may 

potentially result in losses of valuable historical information that is simply discarded - eventually leading to 

estimates of lower significance and/or of lower predictive ability. For instance, in macro econometric setups, a 

researcher often faces situations where recording of country-level variables was launched at different points in 

time and/or they are available at lower frequencies in the beginning of the sample. This problem is particularly 

evident in macroeconomic data sets of a few developing and emerging economies. In Georgia, for example, 

reliable data on the gross domestic product (GDP) has been available since 2003 while the headline inflation and 

the money aggregates were started to be observed much earlier1. As another example, country-level inflows of 

foreign direct investment into Georgia are provided in annual amounts in the beginning of the sample while 

quarterly data become available later. Another notable observation is the time series for the monetary policy rate, 

which the National Bank of Georgia has been regularly publishing since 2008, i.e., around the time when the 

inflation targeting framework became operable in Georgia. In either case, a standard VAR setup would force a 

researcher to simply disregard whole chunks of the data with missing observations and to clip the dataset down 

to the earliest data point where all series are available at same frequencies. In the estimation part of the paper, we 

explicitly show this.  

Reasons behind availability of data over different time spans can be various. Generally, one obvious 

reason was a wave of structural reforms of government institutions in countries that were transitioned to market 

economies in the late 20th century. This required them to completely overhaul frameworks for statistical data 

 

 
1 For reference, see “Statistics” section of the National Bank of Georgia, www.nbg.gov.ge/index.php?m=306&lng=eng 

http://www.nbg.gov.ge/index.php?m=306&lng=eng


ECOFORUM 

[Volume 10, Issue 3(26), 2021] 
 

 

description, measurement and collection. Meanwhile, these institutions were encouraged to gradually increase 

transparency by sharing data with the public and, in some cases, were enabled to reach out to sources they had 

been unauthorized to tap before. Lastly, the reforms typically spawned completely new sets of data. For 

example, whenever modernization of monetary and financial systems in post-soviet countries commenced, 

making use of various data on interest rates, assets and liabilities became of the utmost importance for monetary 

policy and financial stability purposes.  

We propose a Bayesian approach to the problem of uneven datasets by introducing a novel notion of 

‘empirical-iterative prior’. This type of prior is empirical in the sense that it is based on the data at hand unlike 

some common approaches of deriving priors from subjective views of a researcher. Further, its iterative nature is 

underpinned by step-by-step estimations of multiple VAR models with incrementing number of variables: at 

each step, the informative signal coming from the VAR model of longer-than-others series is accumulated into 

the Minnesota-type prior which is then used to estimate the same model appended with another variable of lower 

length. Thus, the estimation step of the final model utilizes all the information from the variables under 

consideration. We find that this prior remarkably improves out-of-sample properties of the VAR model 

compared to standard alternatives.  

II. LITERATURE REVIEW 

To our knowledge, virtually no direct solution has been offered in academic literature for the problem of 

estimation of VAR models lacking equisized time series. However, in general, modeling of scarce data has 

benefitted from a rigorous interest of researchers. For a detailed retrospective, readers are referred to Granger 

and Newbold (1986), Marcellino, Stock and Watson (2003), Banerjee, Marcellino and Masten (2005), Alba and 

Mendoza (2007), Stock and Watson (2017). Based on these contributions, Bayesian approach to overcome data 

issues such as noise, errors, and uncertainty has been widely recognized. One obvious reason is that Bayesian 

methods allow for subjective probabilistic judgments to be included in deriving inferences from data. This stands 

in stark contrast to traditional frequentist school of statistical inference which relies on conclusions largely drawn 

from pure data observations. Therefore, the latter typically performs apparently worse when data is scarce - 

yielding estimates of parameters of low significance and/or of low predictive ability.  

Applications of Bayesian methods to VAR models dates back to seminal works by Litterman (1980, 

1986). He argued that the structure and magnitude of true population parameters in the VAR model are unclear 

and implied that it is better not to give too much value (weight) to specific values of the model parameter (e.g., 

to those with outright zero constraints). Instead, he recommended describing this ambiguity of model parameters 

with some "prior" probabilistic distribution. As a result, the degree of initial uncertainty, represented by the prior, 

may be later improved by the information obtained from the data observations. In this case, the improvement is 

carried out through the informative "signal" from the data and not by the "noise", which ensures the reduction of 

the risk of overfitting (i.e. the situation when an estimated model excessively reflects random variation in the 

variables as compared to their underlying relationship). It is believed that for the reasons above, Bayesian vector-

autoregressive models (BVARs) provide a much better prediction than reduced-form VAR classical alternatives 

or structural models (Canova 2007). The selection of a prior distribution is the most important step in starting a 

Bayesian evaluation. In general, preliminary information is essential even because two economists can quite 

rightly make two different statistical conclusions based on the same data (Leamer 1978). Due to the dependence 

of conclusions on the initial information, it is necessary to have a method that matches the sample of data to the 

prior, and the Bayesian approach offers exactly the desired rule.  

A prior typically reflects a researcher’s beliefs about relationships between the variables being modeled. 

These beliefs may stem from the economic theory, practical experience or simply, intuition. But a powerful 

alternative is to use the data at hand to directly estimate hyperparameters, i.e. parameters of the prior distribution. 

Although being derived from frequentist methods of estimation (in particular, maximum likelihood estimation), 

these estimators help determine the probabilistic nature of model parameters and instrumentalize the prior 

information (Giannone, Lenza and Primiceri, 2015). This type of approach yields so-called empirical priors in 

Bayesian setups, which we rely upon in this paper.  

The scarcity of data (compared to the parameters to be estimated) naturally limits the desired number of 

variables to be included in the classical VAR model. In this regard, too, the Bayesian approach successfully 

tackles the problem. A widely acknowledged work published by the European Central Bank (Banbura, Giannone 

and Reichlin 2008) explicitly shows that BVAR is a full-fledged tool for large data panels under the conditions 

of proper Bayesian shrinkage of the probabilistic distribution of parameters. 
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III. DATA DESCRIPTION 

The empirical part of the paper employs three variables from the Georgian economy to illustrate workings 

of the proposed approach. The annual inflation rate is based on the CPI measure published by GeoStat2 in 

monthly frequency and is available from January 1996. The same institution releases quarterly data on GDP, the 

annual growth rate of which is available from Q1 2004. The last variable under consideration is the policy 

(refinancing) rate of the National Bank of Georgia with a starting point in January 2008. Monthly data is 

aggregated into quarterly through averaging. The last date for all transformed time series is Q1 2021. Later, it 

will be useful to have a visual understanding of uneven time dimensionality of these variables illustrated on Fig. 

1 below. 

 

 
Figure 1 – Availability of data on the variables under consideration 

IV. METHODOLOGY 

In general terms, the idea behind Bayesian inference is to derive conclusions on unknown parameters, 

say, , of the model under consideration. However, unlike the frequentist approach to statistical inference, 

Bayesian methods view the parameters as random - described by probability distributions before and after 

observing the data. We denote prior (‘before’) knowledge by  probability density function and posterior 

(‘after’) knowledge by  where  denotes the data itself. Then, Bayes’ theorem implies that 

 

 
 

where  is a probability density of the data given the parameters (frequentist terminology dubs it a 

likelihood function if viewed as a function of the parameters) while  is a probability density of the data over 

all possible values of the parameters. The latter plays a role of the normalizing constant to the posterior density.  

For notational purposes, we first outline a concise form of a general VAR model to consider: 

 

 (1) 

 

where  is used as a term for the data information on the dependent variable,  summarizes the lagged values of 

,  collects all autoregressive and constant parameters of the system, and  is the error term. In particular,  is 

a  matrix consisting of transposes of  –  column-vector observations on  dependent variables at 

time . As an example, for the variables in our model specification ( ), this vector, at , 

would be 

 

 
 

where variable names are self-explanatory.  is a  matrix (  is a lag-order) each column of which 

consists of either only ones, or zeros and lagged observations of the corresponding dependent variable. Again, 

continuing the example, the first column of  would be a vector of three ones and the 2-nd column would look 

 

 
2 National Statistics Office of Georgia. Website: https://www.geostat.ge/en 

https://www.geostat.ge/en
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like  

 
 

where we assumed . Further,  is a  matrix of intercepts and autoregressive parameters.  

Finally,  is a  matrix each column of which combines all error terms associated with one single 

dependent variable. Here we apply a common assumption of (conditional) multivariate normality to the error 

terms: 

 

 
 

where 0 is a trivial expected value column-vector and  is a contemporaneous covariance matrix ( )). 

This assumption gives the following matric-variate distribution of  in the spirit of Karlsson (2012): 

 
where the first term of matric-variate normal distribution is a  matrix of zeros for expected values of 

errors,  is proportional to the contemporaneous covariance  matrix, , between the error terms in the 

rows of , and  is a  identity matrix related to the covariance between the error terms in the columns of 

. The latter assumption implies that the errors are serially uncorrelated.  

Let us now rewrite (1) in the form of 

 

 
 

where ,  and  are vertical stacks of all terms in ,  and , respectively. It is obviously implied that 

. Then the likelihood function of  and , given the  sample, allows for the following 

distributions of these parameters (Koop and Korobilis, 2010): 

 

  (2) 

 

And 

 

  (3) 

 

where  subscript refers to the OLS estimators of the corresponding parameters and  denotes a Wishart 

distribution (with assumed respective degrees of freedom).  

(2) and (3) fully summarize the knowledge of the researcher about  and  by purely observing the data. 

But the Bayesian estimation methods allow us to incorporate any prior beliefs on these parameters. Although 

there exists a number of alternatives, so-called Minnesota prior approach – originally proposed by Litterman 

(1980) - still enjoys a wide popularity due to its simplicity, tractability and ability to deliver accurate forecasts 

(Koop 2017). We, too, build our approach based on this framework under which the prior knowledge about  

and  is given in a non-identical way. In particular, is believed to be a priori a diagonal matrix with non-zero 

elements equal to the results of separate OLS estimations of VAR model equations. In our specification,  

 

  (4) 

 

where  is a sample variance of residuals from a linear regression of the inflation equation. Other diagonal 

elements of the matrix are obtained from the GDP and policy rate equations. In turn, the prior for  is given in 

truly Bayesian fashion: 

 

 
 

where it is clearly manifested that the parameter is a random quantity with a (normal) probability distribution and 

‘hyper-parameters’ - prior mean of  and prior variance of . Under Minnesota approach, elements of  
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are mostly set to zero to reflect a prior belief that time series (in case of growth rates) have low persistence, but 

any other theoretical value is also possible. As for , in subsequent derivations it is assumed to be diagonal 

and each non-zero element of it is determined based on whether it is related to a coefficient before the own lags 

of the dependent variable of the corresponding equation, to that of the lags of some other variable, or to that of 

an exogeneous variable and a constant (for details, readers are referred again to Koop and Korobilis (2010)).  

Finally, Minnesota approach allows for an analytical posterior (i.e. after observing both the data and the 

prior) distribution for : 

 

 
 

where  subscript refers to the posterior distribution parameters. Their estimators can be obtained in the 

following way: 

 

 
 

 
 

Having set out the basic principles of the Minnesota prior, we now turn to a detailed description of our 

approach – empirical-iterative prior - which, in essence, is a rule for determination of numerical values of hyper-

parameters  and . The formation of empirical-iterative prior is carried out in several stages (or iterations). 

Without a loss of generality, we make use of the abovementioned model specification with three time series from 

the Georgian economy. The first iteration determines the one that starts from the earliest date. The data 

inspection reveals that the longest series is the CPI inflation. Let us denote it by , where the upper index 

indicates a sequence number of iterations. We write an autoregressive model for this variable with  lags 

and a constant with a sample size equal to the length of the inflation time series: 

 

  (5) 

 

Next, we apply a zero mean-prior, , respectively to all  parameters in (5) and 

obtain posterior values: ,  and . Our particular interest lies in  as it will be used in the 

second iteration.  

The second iteration adds another – the longest - time series from the remaining two to the model 

specification – that is, the GDP growth rate. Now, with the sample size being clipped down to the length of the 

latter, we consider a 2-variable VAR: 

 

 
 

  (6) 

 

Before posterior computations, we apply following mean-priors to the coefficients of each equation in (6): 

 

 

 

  

 

The posterior quantities include, among others, four estimates of the first-lag parameters that we will use 

to construct mean-priors for the third and final iteration. The model specification at this stage is: 
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  (7) 

 

with the following mean-priors: 

 

  

 
  

 

Posterior computations of estimates for the parameters in (7) conclude the process. The described 

procedure ensures that the information obtained from one (smaller) iterative model in the form of the parameter 

estimator at lags in each equation is transferred to the new (larger) iterative model through  prior, which plays 

the role of the initial assumption on the mean of the re-evaluated parameter. In this way, uneven time series 

contained in the data set are gradually "connected" to each other, and the final model is estimated in such a way 

as to account for the dynamics of all time series regardless of their unequal lengths. Also note again that a 

sample size at each iteration is clipped to the shortest one and, therefore, is changing from one stage to another. 

This fact is illustrated on Fig. 2 below.  

 

 
Figure 2. Sample Size at Each Iteration 

 

However, the  values determine only the first moments of the prior - the mean value of . As for the 

second moment – the variance ( ), which describes the degree of uncertainty around the mean-prior in 

Minnesota-type setups, it is controlled by three additional hyperparameters, ,  and . In particular, the smaller 

they are, the smaller the statistical dispersion, and the estimation procedure tries to keep (or “shrink”) the 

posterior estimators close to the mean value indicated by . In other words, the numerical magnitude of the 

posterior estimator is less affected by (new) data and is largely determined by the prior value.  controls 

shrinkage around the prior on own lag parameters of the dependent variable in each equation, while  

hyperparameter handles shrinkage around the prior on lag parameters of other variables in the same equation. As 

for , it controls shrinkage around the prior on the parameters before the exogeneous variables and the constant. 

In our illustrative example, using these hyperparameters, elements of  corresponding to the inflation equation 

at the second iteration of our procedure are given in Table 3 of the Appendix where  values are standard 

deviations from (4), and  and  hyperparameters are divided by the lag number. Hence, more distant lags lead 

to lower uncertainty in the prior, which is in line with the stylized fact that a first lag of a variable has better 

predictive power than other lags in an autoregressive process.  

The question naturally arises: how to determine values for ,  and ? We apply a simple formula that 

defines  and  as a ratio of a sample size at each iteration to the sample size at the first iteration divided by the 

number of parameters to be estimated. Thus, we force the posterior to shrink more to the prior as less data 

becomes available.  is taken to be equal to 100 as in Koop an Korobilis (2010).  

In order to evaluate relative model performance, we compare final-iteration out-of-sample 1-step-ahead 

forecast of the model under consideration to that of two alternative models with the same set of variables. In 

particular, we choose reduced-form VAR and a simple Bayesian VAR as competing models. In the latter case, 

we apply commonly used priors as in Tutberidze and Japaridze (2017). The comparison is carried out based on a 

mean absolute scaled error (MASE) which is believed to yield superior results due to its scale invariance, 
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symmetry, and interpretability (Franses, 2015). For a 1-step-ahead forecast, this measure is computed as  

 

 
 

where  and  denote a data point and its forecast, respectively. In effect,  measures an absolute error of the 

model 1-step-ahead forecast relative to a sample average of absolute errors of naïve forecasts (i.e. forecasts of 

the “Random Walk”). The lower the MASE, the bigger the evidence in favor of better predictability (Hyndman 

and  Koehler, 2006).  

V. RESULTS 

At the first iteration with a single equation in (5), our empirical-iterative procedure picks values for the 

hyperparameters as follows3:    

 

 
 

 
 

 
 

The prior variance matrix is4: 

 

 
 

Resulting posterior estimate of the coefficient of interest is . Hence, at the second iteration, a 

mean-prior for the inflation equation parameters is constructed as 

 

 
 

while applying a zero-mean prior to the GDP equation.  and  are set to 0.64/(5*2)=0.06. , again, is equal to 

100.  Based on these values, diagonal elements of the prior variance matrix is presented in Table 4 in the 

Appendix where first five elements correspond to the parameters in the inflation equation, and the last five ones 

– to the GDP equation. The posterior estimates of the first-lag coefficients are: 

 

, , , . 

 

Therefore, 

 

 
while applying a zero-mean prior to the policy rate equation.  and  are set to 0.49/(5*2)=0.05. , again, is 

equal to 100.  

Finally, at the last iteration, based on the priors from the second stage, we obtain posterior estimates for  

which are listed in the Table 1 below.  

 

 

 
3 Results hereafter are rounded to two decimal places. 
4 The diagonal elements of the prior matrix correspond to the constant, the first-lag, and the second-lag parameters of the equation.  
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Table 1. Posterior Estimates for Final-Iteration Parameters 
 Inflation Equation GDP Growth Equation Policy Rate Equation 

Variable Constant Lag 1 Lag 2 Constant Lag 1 Lag 2 Constant Lag 1 Lag 2 

Constant 2.27  6.45  1.66   

  0.92 -0.10  0.17 -0.01  0.08 -0.00 

 0.13 -0.03 0.59 0.00 0.02 0.01 

 -0.11 -0.20 -0.95 0.08 0.73 -0.07 

 

We use these estimates to calculate out-of-sample 1-step-ahead forecasts for the variables under 

consideration. Then we obtain the mean absolute scaled error (MASE) quantities of these forecasts and compare 

them to those from reduced-form VAR and simple BVAR models in Table 2. 

 

Table 2. Mean Absolute Scaled Errors 
Model Inflation GDP 

Growth 

Policy Rate Average 

BVAR with Empirical-Iterative Priors (BVAR-EIP) 0.95 0.91 1.03 0.96 

Reduced-Form VAR 1.09 0.98 1.21 1.09 

Simple BVAR 1.04 0.96 0.97 0.99 

 

As evidenced from Table 2, the Bayesian VAR model with empirical-iterative priors performs generally 

better than the alternatives. The error in BVAR-EIP forecasts, on average, is 7% lower than that in the competing 

models. In addition, the average MASE for BVAR-EIP is less than 1, which, according to the common practice, 

is a sign of a reasonable ability to predict through the underlying model.  

VI. CONCLUSION 

In this paper, we propose a novel forecasting method based on the Bayesian approach. In particular, 

information (a signal) coming from longer time series is progressively accumulated into a prior that is then used 

for a posterior estimation of a VAR model with original time series naturally clipped down to a single identical 

length. The advantage of the method is that it allows the model to be evaluated with any set of variables, 

regardless of unbalanced availability of historical data on them. For illustration purposes, the study selected three 

macroeconomic variables (CPI inflation, real GDP growth, monetary policy rate) from the Georgian economy 

with unequal observation periods and applied the novel method to forecast them. The results of cross-validation 

of the forecast revealed the appropriateness of the methodology used. In particular, the values of the mean 

absolute scaled error (MASE), according to the common practice, indicate a reasonable ability to predict under 

this approach. 

The study contributes to the current intensive academic discourse on forecasting transition economies. 

Presumably, the algorithm developed within the study will successfully cope with the task of evaluating and 

forecasting the macroeconomic variables on examples of other transition countries. Notably, this type of 

economies are characterized by most of the features that portray the Georgian economy. In particular, 

macroeconomic time series typically suffer from fluctuating dynamics, low accuracy and, of course, unbalanced 

and scarce availability.  

The approach utilized in this research allows for further insights: why not to take certain time series at 

lengths that a researcher deems feasible? This would let him avoid a negative impact of structural breaks or 

‘unreliable’ historical data on the estimation and/or forecasting accuracy. Economic crises in the past, as well as 

COVID-19 pandemic, have affected dynamics of a number of macro and microeconomic variables severely. 

Adjusting a sample size of series and employing empirical-iterative prior in the Bayesian VAR environment may 

help successfully tackle the issue of poor estimates and large errors in forecasts. This is indeed an interesting 

avenue of research to follow in further studies.  
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VII. APPENDIX 

Table 3. A General Form of the Matrix of Prior Variance of Parameters in the Inflation Equation at the 

Second Iteration 

 

 
 

Table 4. Estimated Diagonal Elements of the Prior Variance Matrix at the Second Iteration5 

 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

 

 
5 The first element corresponds to the constant in the inflation equation, and the following four pertain to the coefficients of the lagged 

terms of the variables in the same equation.  
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