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Abstract 
The human brain and Large Language Models (LLMs) exemplify two profoundly different information-
processing systems, with a significant imbalance in energy consumption. This article provides a comparative 
analysis of the energy requirements of biological cognition and machine-based models, linking these differences 
to their economic consequences. The operational costs of LLMs, driven by energy-intensive computations, 
present financial and environmental sustainability challenges, influencing the scalability of AI adoption across 
industries. In contrast, the human brain’s remarkable energy efficiency highlights the economic advantages of 
biological intelligence, which operates with minimal resource investment. We explore the economic trade-offs of 
AI’s growing energy demands, including cost implications for firms, policy responses such as carbon 
regulations, and the potential labor market disruptions arising from energy-efficient automation. By integrating 
insights from neuroscience, engineering, and economics, we argue that sustainable AI development hinges on a 
fusion of brain-inspired paradigms, eco-efficient hardware solutions, and strategic policy frameworks that 
balance innovation with economic feasibility. 
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I. INTRODUCTION 

The metaphor “the brain is a Ferrari that sips fuel like a Prius, while LLMs are freight trains, powerful but 
thirsty” (Chemero, 2023) underscores a central conundrum in modern artificial intelligence (AI). As LLMs, 
exemplified by models such as GPT-4 and Claude 3, push toward trillions of parameters, their energy 
consumption becomes an increasingly significant concern for environmental sustainability and operational 
feasibility (IEEE, 2024). 

In stark contrast, the human brain accomplishes complex cognitive tasks, from comprehending language 
to abstract reasoning, using roughly 20 watts, comparable to a dim lightbulb (Human Brain Project, 2023). This 
efficiency emerges from billions of years of evolutionary refinement. While LLMs can generate sophisticated 
text, translate languages, and even produce creative content, they currently do so at the cost of massive parallel 
processing, primarily employing graphics processing units (GPUs) or tensor processing units (TPUs) that 
demand exponentially higher energy inputs (arXiv, 2024). 

This paper seeks to: 
1. Compare the energy consumption of human cognition and LLMs through a common task, writing a 

500-word essay. 
2. Investigate the biological and computational underpinnings of their energy efficiency. 
3. Analyze cutting-edge neuromorphic computing solutions and model optimization strategies. 
4. Discuss the future of sustainable AI, focusing on the importance of embodied cognition and 

interdisciplinary collaboration. 

II.ENERGY CONSUMPTION OF THE HUMAN BRAIN  

The human brain is often described as a marvel of biological engineering, performing complex 
computations while consuming a surprisingly small amount of energy. Despite representing only about 2% of the 
body’s mass, the brain utilizes 20% of the body’s total energy expenditure (Herculano-Houzel, 2011). Its 
exceptional efficiency arises from optimized neural networks, efficient signal transmission, and effective energy 
metabolism, allowing the brain to maintain high levels of performance while conserving energy. 

The human brain’s energy efficiency is evident in its ability to allocate resources optimally. Neurons, the 
primary cells responsible for transmitting information, rely on minimal energy use during communication. 
Sparse coding, a mechanism that limits the number of active neurons during information processing, 
significantly reduces energy consumption (Laughlin & Sejnowski, 2003). Additionally, neural firing is 
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conserved by mechanisms that ensure only the most essential neurons are active at any given time, thereby 
limiting unnecessary energy expenditure (Herculano-Houzel, 2011). This balance between functionality and 
energy use highlights the brain's ability to perform sophisticated tasks without a proportional increase in energy 
requirements. 

Neurons communicate through action potentials and synaptic transmission, both of which involve the 
movement of ions across cell membranes. The brain achieves efficiency in this process through the recycling of 
ions. Ion channels are structured to conserve energy by reducing the overall metabolic cost of maintaining 
resting and active states (Attwell & Laughlin, 2001). This mechanism allows the brain to handle a vast amount 
of data processing without overwhelming its energy reserves, further contributing to its remarkable efficiency. 

The brain’s energy demands are primarily met through the oxidation of glucose, a process that maximizes 
energy output. Glucose oxidation is highly efficient, producing more energy per molecule than other metabolic 
pathways (Clarke & Sokoloff, 1999). This efficient metabolism enables the brain to support activities such as 
reasoning, memory, and sensory processing without experiencing significant energy deficits. Moreover, the 
brain’s reliance on glucose highlights its ability to sustain high levels of cognitive activity with minimal resource 
requirements. 

The architecture of the human brain also plays a critical role in energy efficiency. As the brain has 
evolved, its neurons have been scaled to optimize energy use while maintaining high computational capacity. 
This optimization allows the human brain to manage a large number of neurons and synapses without 
proportional increases in energy consumption (Herculano-Houzel, 2016). This scaling ensures that the brain 
remains efficient even as it processes more complex information. 

III. ENERGY CONSUMPTION OF LLMS 

In recent years, large language models (LLMs) have gained widespread adoption for natural language 
processing (NLP) tasks. While these models have significantly advanced the state of AI, they require substantial 
computational resources, leading to considerable energy consumption. Understanding the energy demands of 
LLMs is critical for assessing their environmental impact and guiding the development of more sustainable AI 
technologies. 

The energy consumption of LLMs primarily stems from their computational intensity during both training 
and inference phases. Training a large model involves processing vast amounts of data over multiple iterations, 
which requires extensive GPU and TPU usage. For instance, training GPT-3 required 175 billion parameters and 
consumed an estimated 1,287 MWh of electricity, emitting approximately 552 tons of CO₂ (Patterson et al., 
2021). This scale of energy use is attributed to the sheer number of calculations needed to optimize the model 
across billions of parameters. 

The carbon footprint of LLMs is significant due to their reliance on energy-intensive hardware. The 
environmental impact depends on the energy source used to power data centers. If renewable energy sources are 
utilized, the carbon emissions can be significantly reduced (Henderson et al., 2020). However, data centers in 
regions relying on fossil fuels contribute substantially to greenhouse gas emissions, raising concerns about the 
sustainability of widespread LLM adoption. 

To address these concerns, researchers have explored ways to reduce the energy demands of LLMs. 
Techniques such as model distillation, parameter sharing, and pruning have been developed to make models 
smaller and more efficient without compromising performance (Sanh et al., 2019). Additionally, innovations in 
hardware design, such as the development of energy-efficient GPUs and TPUs, have also contributed to lowering 
energy consumption. Companies like Google and OpenAI are investing in optimizing training pipelines to 
further minimize environmental impact. 

Despite improvements in efficiency, there is a trade-off between performance and sustainability. Larger 
models tend to perform better in NLP benchmarks but at the cost of higher energy consumption. Balancing these 
priorities requires a focus on not only creating powerful models but also addressing their environmental impact. 
Policies to regulate energy use in AI development and incentives for using renewable energy sources in data 
centers could support this goal (Bender et al., 2021). 

IV. EVOLUTIONARY OPTIMIZATION OF THE HUMAN BRAIN  

The human brain operates at approximately 20 watts, sustaining an estimated 80–100 billion neurons and 
trillions of synaptic operations (Chemero, 2023). Despite handling diverse tasks, language comprehension, motor 
coordination, and memory retrieval, its baseline power requirement remains remarkably low due to evolutionary 
adaptations for survival, metabolic efficiency, and robust learning mechanisms. 
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When engaging in language-based tasks (e.g., writing an essay), activation patterns are predominantly 
localized to language centers (Broca’s and Wernicke’s areas) and executive function regions, minimizing 
redundant energy usage (Human Brain Project, 2023). Neurons often fire sparsely, utilizing spikes only when 
necessary, further conserving energy. 

Biological neurons operate analogously, relying on chemical gradients and ion channels, thereby avoiding 
the overhead inherent in digital binary operations. This analog nature permits continuous modulations of signal 
strength, enabling more efficient transmission and processing of information. 

For a one-hour essay-writing session, the brain’s total energy usage is roughly 0.02 kWh, signifying an 
extremely efficient computing apparatus honed by evolution to meet metabolic constraints (Human Brain 
Project, 2023). 

V. COMPUTATIONAL INTENSITY OF THE LLMS 

LLMs employ massive parallelism to generate text. Even a seemingly simple task, such as producing a 
500-word essay, can demand around 2.9 Wh per inference query. Iterative refinements, common in interactive 
usage, compound this figure to about 0.029 kWh per user session (IEEE, 2024). 

The true magnitude of LLM energy usage becomes apparent when scaled to millions of daily users. A 
platform serving 1 million users for essay-writing tasks each day may consume approximately 29,000 kWh, 
equating to the daily energy requirements of over 2,700 U.S. households (arXiv, 2024). 

While inference is substantial, training costs are even higher. A single training run for GPT-3 was 
estimated to emit 552 tons of CO₂, comparable to the annual emissions of 123 gasoline-powered cars (IEEE, 
2024). Such impacts underscore the urgency of devising more energy-efficient training and deployment methods. 

 

VI. NEUROMORPHIC COMPUTING 

Neuromorphic computing is an emerging field focused on replicating the structure and function of the 
human brain in computational systems. By drawing inspiration from biological neural networks, this approach 
aims to overcome the limitations of traditional computing, particularly in energy efficiency, adaptability, and 
processing power. Its promise lies in revolutionizing artificial intelligence (AI) through more flexible, efficient 
systems with reduced energy demands. 

Pioneered by Carver Mead in the 1980s (Mead, 1990), neuromorphic computing borrows principles from 
neuroscience to design artificial neural systems. Unlike the conventional von Neumann architecture, which 
separates processing and memory and creates bottlenecks for large datasets, neuromorphic architectures integrate 
these functionalities in a distributed manner (Indiveri & Liu, 2015). This integration mirrors biological brains, 
enabling parallel and efficient data handling. 

A central feature of neuromorphic systems is their use of spiking neural networks (SNNs), which emulate 
the asynchronous, event-driven nature of brain activity. Instead of relying on continuous activation functions like 
traditional artificial neural networks, SNNs communicate through discrete spikes, closely reflecting how neurons 
transmit signals (Roy et al., 2019). This event-driven mechanism reduces energy consumption and enhances real-
time processing. 

 
Advantages of Neuromorphic Computing 

1. Energy Efficiency 
 
Neuromorphic systems often consume far less energy than conventional AI hardware. Their event-
driven design ensures that power is used only during active computations, thereby lowering overall 
energy usage. For instance, Intel’s Loihi chip consumes orders of magnitude less power than traditional 
GPUs when running AI tasks (Davies et al., 2021). 
 

2. Real-Time Processing 
 
Thanks to their parallel architectures and low latency, neuromorphic systems excel at real-time 
processing of sensory data, such as visual and auditory signals. They are particularly useful in fields 
like robotics, autonomous vehicles, and edge computing (Schuman et al., 2017). 
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3. Adaptability and Learning 
 
Neuromorphic systems inherently adapt to changing environments. They can perform on-device 
learning using local rules like spike-timing-dependent plasticity (STDP), mimicking how synapses 
strengthen or weaken based on activity patterns in the brain (Furber, 2016). This adaptability contrasts 
with static algorithms, which lack ongoing learning capabilities. 
 

Applications of Neuromorphic Computing 
1. Artificial Intelligence 

 
By enabling energy-efficient, high-performance AI, neuromorphic computing is a key component of 
sustainable AI development. Its low-power profile makes it especially suitable for edge AI tasks 
requiring real-time responsiveness. 
 

2. Robotics 
 
In robotics, neuromorphic systems enhance sensory-motor integration. Event-based vision sensors, 
derived from neuromorphic principles, allow robots to process high-speed motion data with minimal 
energy consumption (Indiveri et al., 2011). 
 

3. Healthcare 
 
Neuromorphic architectures are naturally aligned with brain-machine interfaces and neural prosthetics. 
They can handle real-time neural signal processing, paving the way for advancements in 
neurorehabilitation and assistive devices (Qiao et al., 2015). 
 

Despite its promise, neuromorphic computing faces notable challenges. The lack of standardized 
programming tools and frameworks complicates development and scaling, while faithfully replicating biological 
neurons and synapses in hardware remains a technical hurdle (Schuman et al., 2017). Progress in materials 
science, such as the development of memristors, and integration with emerging technologies like quantum 
computing will likely catalyze future breakthroughs. As the field advances, neuromorphic computing is expected 
to play a pivotal role in shaping next-generation AI and computing systems. 

 
Neuromorphic Computing at the Hardware Level 

Neuromorphic computing aims to imitate the brain’s structure and function by adopting principles like 
spike-based communication and local memory storage (Human Brain Project, 2023). This biologically inspired 
design holds significant potential for reducing power consumption. Notable examples include: 

 
1. SpiNNaker2 

o Comprises 10 million cores arranged to mimic biological neural networks. 
o Achieves up to a 16× reduction in energy usage compared to conventional GPUs for certain 

tasks (Human Brain Project, 2023). 
 

2. BrainScaleS 
o Employs analog circuits and spiking neural networks to replicate neuronal firing patterns. 
o Minimizes data redundancy and dynamic power consumption by executing computations only 

when spikes occur. 
 

3. Algorithmic Innovations 
o Spiking neural networks and evolutionary algorithms mimic synaptic plasticity, potentially 

reducing energy costs by 80–95% compared to standard deep learning methods. 
o These approaches also enable continuous on-chip learning, reducing the need for large-scale 

retraining cycles. 
 

By aligning physical computational processes with biologically inspired models, neuromorphic chips can 
closely approximate the remarkable energy efficiencies observed in natural neural networks (arXiv, 2024). 
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VII.  MISCELLANEOUS ENERGY OPTIMIZATION STRATEGIES OF LLMS 

Even in the absence of fully neuromorphic hardware, several strategies can mitigate LLMs’ energy-
intensive profile: 

Model Compression 
• Techniques such as pruning, weight quantization, and knowledge distillation can decrease model 

size without significantly degrading performance. 
• Recent developments in ultra-low-bit quantization (e.g., 1.58-bit algorithms) have demonstrated 

substantial power savings while retaining acceptable inference accuracy (IEEE, 2024). 
 

Hardware-Software Co-Design 
• Energy-aware inference protocols that adjust clock rates and voltage levels based on real-time 

computational demands can significantly cut power use. 
• Customized AI accelerators (e.g., TPU ASICs) can be designed to handle specific model 

architectures, further reducing overhead. 
 

Renewable Integration 
• Shifting data centers to rely on solar, wind, or nuclear power can lower the carbon footprint by 40–

60%. 
• Intelligent scheduling of AI workloads to off-peak hours or renewable energy surpluses can further 

optimize resource utilization (arXiv, 2024). 
 

VIII. THE EMBODIMENT GAP 

A fundamental limitation of current large language models (LLMs) is their disembodied nature: they 
learn exclusively from massive textual datasets without any direct sensory or motor experiences (Chemero, 
2023). In contrast, human cognition and language evolve through constant interaction with the physical and 
social environment, forming neural pathways optimized for context-specific understanding. 

Embodiment is central to human cognition, shaping how we acquire knowledge, develop language, and 
navigate the world. Through sensory and motor experiences, humans ground abstract concepts in physical reality 
(Barsalou, 2008). For instance, understanding the term "heavy" involves not just linguistic knowledge but also 
the physical experience of lifting or carrying objects. This embodied learning enables humans to connect 
language intuitively with real-world situations. 

LLMs, by comparison, lack such grounding. They learn from textual patterns alone, unable to interact 
with the environment or incorporate sensory-motor feedback. While LLMs can replicate human language and 
infer text-based patterns, they do not possess the experiential foundation that gives language its real-world 
meaning. As a result, LLMs often struggle with tasks requiring an understanding of spatial relationships, 
physical causality, or sensory experiences, frequently producing responses that lack accuracy or contextual 
relevance. 

 
Critical Limitations of Disembodiment 
The absence of embodied experiences in LLMs creates several key challenges: 

1. Lack of Contextual Grounding 
 

Without sensory and motor experiences, LLMs cannot fully comprehend context beyond textual patterns. 
For example, they may generate plausible-sounding yet incorrect descriptions of physical phenomena due to 
their lack of interaction with the real world (Bender & Koller, 2020). This limitation significantly hinders their 
application in domains like robotics or scientific reasoning, where deep contextual understanding is essential. 

 
2. Challenges in Commonsense Reasoning 

 
Commonsense reasoning often depends on embodied experiences, such as knowing that ice is slippery or 

that liquids flow downward. While LLMs can infer statistical correlations from text, they frequently fail to 
generalize these correlations to novel scenarios or align reasoning with real-world constraints (Marcus & Davis, 
2020). 
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3. Ethical Implication 
 

The lack of embodied understanding also raises ethical concerns. Without sensory or experiential 
grounding, LLMs lack the intuitive grasp of human emotions and values that inform decision-making. This 
limitation complicates efforts to ensure ethical behavior and alignment with human intentions in complex real-
world contexts (Floridi & Chiriatti, 2020). 

 
Toward Embodied AI 

Addressing the limitations of disembodied LLMs involves integrating sensory and motor experiences into 
AI systems. Embodied AI research explores how agents equipped with sensors, cameras, and actuators can learn 
by interacting with their environments. Such systems develop a grounded understanding by associating sensory 
inputs with physical actions and outcomes. For instance, a robot could learn the concept of "fragility" by 
handling objects of varying durability, connecting the term with direct experiential knowledge (Chen et al., 
2021). 

Integrating LLMs with embodied systems offers a promising pathway to bridge the gap between language 
and experience. For example, pairing LLMs with robotics could enable systems to interpret textual instructions 
while using sensory data to ground those instructions in physical reality. Similarly, virtual environments and 
simulations could serve as controlled settings for AI agents to acquire embodied knowledge without the risks 
associated with real-world experimentation. 

Scaling vs. Grounding 
As LLMs grow in scale, incorporating trillions of parameters, their reliance on brute-force learning 

demands exponentially higher computational resources. By contrast, embodied cognition suggests that tying 
language comprehension to physical experience could reduce the need for massive, undifferentiated training 
datasets, thereby lowering energy consumption (Human Brain Project, 2023). 

Hybrid Architectures 
Insights from neuroscience highlight the brain’s efficiency as a result of its integrative architecture, where 

perception, action, and cognition are deeply interconnected. Next-generation AI architectures could emulate this 
efficiency by combining neuromorphic hardware with embodied or "sensorized" learning frameworks. Such 
systems would capture real-time environmental data to refine learning processes with fewer training examples, 
paving the way for more efficient and contextually aware AI. 

IX. THE ECONOMIC IMPLICATIONS OF ENERGY EFFICIENCY IN AI 

The stark contrast in energy efficiency between the human brain and large language models (LLMs) has 
significant economic ramifications. Energy costs constitute a major portion of AI deployment expenses, 
impacting firms' operational budgets and influencing the broader AI industry's scalability. As data centers 
increasingly power LLMs, regions with higher energy prices may experience disproportionate financial burdens, 
potentially exacerbating global economic inequalities in AI accessibility. In contrast, the biological efficiency of 
human cognition underscores the economic advantages of natural intelligence, which requires minimal resource 
investment for cognitive processing. 

From a macroeconomic perspective, the rapid expansion of energy-hungry AI models raises concerns 
about sustainable economic growth. Governments and policymakers face trade-offs between incentivizing AI-
driven productivity gains and managing environmental and infrastructure costs. Carbon taxes, energy 
regulations, and green AI initiatives are emerging policy tools to mitigate these economic pressures. 
Additionally, firms developing neuromorphic computing and energy-efficient AI models may gain competitive 
advantages by reducing long-term operational costs, thus shaping future industry dynamics. 

The labor market implications of AI's energy efficiency divide also warrant attention. While LLMs 
automate numerous cognitive tasks, their high energy costs could restrict widespread adoption, preserving 
human labor's role in knowledge-intensive industries. Conversely, advancements in energy-efficient AI might 
accelerate automation, necessitating policy responses such as workforce reskilling programs and AI taxation 
mechanisms to offset economic displacement. 
 

X. CONCLUSION 

The human brain’s 20-watt paradigm starkly contrasts with the energy-intensive nature of today’s LLMs. 
This discrepancy highlights the potential for a new wave of AI systems that prioritize efficiency alongside 
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accuracy and scale. Neuromorphic computing offers a promising hardware foundation, while techniques such as 
model compression, hardware-software co-design, and renewably powered data centers can incrementally reduce 
the carbon footprint of LLMs. 

Addressing the embodiment gap remains pivotal. By infusing AI models with sensory and contextual 
grounding, we may move beyond brute-force parameter scaling, thus aligning large-scale computation with the 
inherent resourcefulness of biological systems. Ultimately, the path toward sustainable AI depends on 
interdisciplinary collaborations, spanning neuroscience, computer engineering, policy-making, and 
environmental science, to ensure that the “Ferrari” efficiency of the brain informs and transforms how we build 
the “freight trains” of modern AI. 
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