SHORT-TERM BAYESIAN INFLATION FORECASTING FOR TUNISIA: SOME EMPIRICAL EVIDENCE

Authors

  • Ahlem DAHEM University Tunis EL MANAR, Tunis

Abstract

In order to explain clearly inflation forecasting and the dynamic of Tunisian prices, this paper uses two econometric approaches, the Standard VAR and Bayesian VAR, to assess three models for predicting inflation, the mark-up model, the monetary model and Phillips curve over the period 1990 Q1 – 2013 Q4.In order to compare predictions, an out-of-sample estimation was conducted. We used the structural break test of Bai &Perron (1998, 2003) and the RMSE criterion for both inflation indices: CPI and PPI. We found that the BVECM mark-up model is best suited to forecast inflation for Tunisia. Our conclusions corroborate the literature of Bayesian VAR forecasting. Our findings indicate that the models which incorporate more economic information outperform the benchmark autoregressive models (AR (1) and AR (2)). The results reveal that forecasting with the BVECM markup model leads to a reduction in forecasting error compared to the other models. The results of the study are relevant to decision-makers to predict inflation in the short- and long-terms in Tunisia and may help them adopt the appropriate strategies to contain inflation.

Author Biography

Ahlem DAHEM, University Tunis EL MANAR, Tunis

Integration Laboratory of International Economic, FSEGT,

Downloads

Published

15.01.2016

Issue

Section

Accounting, Finance, Statistics and Economic informatics